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A two-dimensional numerical simulation of a settling and compacting stack of platelike particles
is described. The plates represent clay particles, such as are found in shales formed from sediments

of clay compacted over geological time scales.

The aspect ratio of a clay particle is sufficiently

high that the plate is flexible when the applied stresses are large. The deformation of each plate
is assumed small, and is therefore governed by the biharmonic equation. A stack of plates is first
formed by ballistic deposition. The stack is then compressed uniaxially, under a gravitational stress
0.z, and the stress-strain relation is obtained as a function of the flexibility of the plates. The void
ratio e within the stack varies approximately as o;,”-®. Experiments are reported in which a stack
of 5000 flexible paper platelets is compacted. A slightly lower power law exponent, —0.2, is found

experimentally.

PACS number(s): 82.70.Dd, 81.35.+k, 83.70.Fn

I. INTRODUCTION

There have been many studies of ballistic deposition,
but little is known about the deposition of nonspheri-
cal particles, and even less about the deposition of de-
formable particles. Our interest here lies in deposits of
flat, platelike clay particles: a bentonite particle might
typically have thickness h ~ 1 nm and lateral dimension
L ~1 pm. Clay particles are transported by rivers to the
sea, where they flocculate and form a sediment on the sea
bed. Subsequent compaction over geological time scales
leads to the formation of mudstones and shales [1]. Simi-
lar cakes of clay particles may be formed in the laboratory
by filtration [2]. The aspect ratio L/h of the particles
is sufficiently large that they are not totally rigid, and
electron micrographs of shales and filtercakes frequently
show that particles have deformed [3]. Here we consider
both numerical simulations of flexible plates stacked on
a discrete two-dimensional (2D) lattice, and experiments
performed upon quasi-2D packings of flexible platelets.

We assume that the deformation of the plates is suf-
ficiently small that standard linear theory [4] applies. If
each plate has flexural rigidity D (per unit length in the
y direction) and undeformed center line z = ((z) = 0
(0 < z < L), the energy of the plate (per unit length in
the y direction) is

L 2\ 2
d*¢
_ 1
This leads to the governing equation for the plate surface
d*¢
Vi P=0, (2)

where P is the force per unit area acting on the plate.
We shall assume that the edges z = 0, L of each plate are
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free, leading to the boundary conditions

d?*C )
T5=0, 2=0L. (3)

As explained in [5], for a plate of thickness h and width
b (in the y direction), with Young’s modulus E and Pois-
son’s ratio v, it is appropriate to take D = Eh%/12(1—1?)
for a deformation which is independent of y (e.g., if
b > L). If L > b, the plate may be regarded as a rod
of length L with a narrow rectangular cross section, and
D = ER3/12.

In Sec. II we discuss a model in which the plates are
represented as a series of discrete points. In Sec. III we
show how bulk macroscopic properties of the stack, such
as the void ratio and stress, may be evaluated. The re-
sults of numerical simulations are presented and analyzed
in Sec. IV. Finally, in Sec. V we report experimental mea-
surements of the compaction of a stack of flexible paper
platelets.

I1I. DISCRETE LATTICE SIMULATIONS

We consider a stack of N, plates. We assume that
the jth plate can be represented as a series of S points
(23,¢7) (s = 1,...,85), where the z7 lie on a lattice z =
na (n = 1,...,N). Once the left-hand edge s=1 of the
plate is fixed, the other S — 1 points are at z =z +
(s — 1)a. During all subsequent motion and deformation
of the plates, the z coordinates zJ are fixed, whereas
the z coordinates (J are allowed to vary continuously.
This fixes the geometry of any given stack of plates, but
has the disadvantage that the length of a plate depends
upon its orientation. However, compaction tends to align
the plates with the horizontal z axis, thereby reducing
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any variation in plate length. One can picture the nodes
(z2,¢?) as sliding up and down a series of vertical wires
z = na. The plates are added to the top of the stack,

one at a time, at a position chosen at random. Thus no
attempt is made to model the arrival of flocs (rather than

individual clay particles) at the surface of the stack.

We shall consider the compaction of the stack of plates
under its own weight. A gravitational force f; = —mga
is assumed to act vertically at each of the nodes. The
boundary condition (3) is applied at the end nodes s =
1, S of the plate. To be consistent, the gravitational force
at the end nodes ought to be reduced to mga/2, leaving a
plate of length (S —1)a and weight (S —1)mga. We shall
ignore this, and consider the plate to have length L = Sa
and weight Mg = Smga. We are therefore neglecting
errors introduced by applying boundary condition (3) at
s =1, S rather than at s = %, S+ %; such errors become
small in the limit § — oo.

Each plate must also support the plates above, by
means of contact forces. These too are discretized, and
are assumed to act vertically between the node of one
plate and those of the plates immediately above and be-

(b)

(d)

FIG. 1. Simulations of a compacted bed of 180 particles
of length L = 20a. (a) Rigid plates; (b) G = 1.9 x 10%; (c)
G =21x10% (d) G =1.8 x 10°.

low. In the simulations presented here, these contact
forces were replaced by soft forces. If the vertical sep-
aration of two nodes is A(, the separation between the
plate surfaces is Az = A( — h, and the contact force was
taken to be

f: =mga(8/A2) )

with § = h/100. The initial configuration of the plates
was determined by ballistic deposition onto the horizon-
tal plane z = 0, using a lattice of size N = 100. Periodic
boundary conditions in the = direction identified £ = Na
with z = 0.

Each node is subjected to a force fJ consisting of con-
tact forces from plates above and below, and gravity. The
midpoint of each plate is at zZ = (z] + z%)/2. The total
force F7 and couple C7 acting on each particle are given
by

S S
Fi=% fl, C'=3 filel-<l).
s=1 s=1

FIG. 2. Simulations of a compacted bed of 500 particles
of length L = 10a. (a) Rigid plates: (b) G = 1.2 x 10?; (c)
G =13 x10°.
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The plates were allowed to sediment from their ini-
tial configuration, with translational and angular veloc-
ities proportional to F7 and C7, respectively, until an
approximate equilibrium position was found. This was
then further refined by computing derivatives of F7 and
CJ with respect both to vertical displacements and to
rotation, and then moving particles appropriately. Con-
vergence was very slow, and complete equilibrium of the
forces was not attained for rigid plates. A large num-
ber of plates leads to a tall column, and a small degree
of compaction leads to large displacements at the top of
the column. Figures 1(a) and 2(a) show the final con-
figurations of stacks of rigid plates. Although the final
equilibration of forces does not ensure that plates are at
a stable equilibrium, in practice no obviously unphysical
configurations were observed.

III. FLEXIBLE PLATES

The Laplacian A is approximated by the finite differ-
ence expression,

AG =a (20— -l (5)

at interior points s = 2,...,S — 1, whereas at the ends,
the boundary condition (3) implies

Al =0, s=1,5.

At the S — 2 interior points of each plate, we have, by

(2),

A =a"'f] . (6)
For equilibrium, we also require

Fi=C=0. (7)

and thus there are S equations for the S unknowns (J
which define the position of plate j. The equilibrium
configuration was determined by an interative scheme.
Plates were considered one at a time, and both f7 and
dfi /dz were computed. The ¢/ were then modified so
that a solution of the S linear equations (6) and (7) was
obtained, using the NAG routine FO4ARF (6] (LU fac-
torization with partial pivoting, where L is a lower tri-
angular matrix and U is an upper triangular one). The
entire stack of plates was swept, and this procedure was
continued until equilibrium was attained.

We nondimensionalize lengths in the x direction by
L = Sa, and in the z direction by h. Stresses are nondi-
mensionalized by

Og = l)h/L4 N (8)

where gy is a typical stress required to deflect a plate of
aspect ratio L/h through a distance O(h). Nondimen-

sional quantities are denoted by a caret. The governing
1

equations become

d*{7

dit
and the nondimensional gravitational force per unit area
on the plates is

P, Fi=0, C'=0.

The mean vertical compressive stress o, in the column
of plates varies from 0 at the top surface to N,Smg/N at
the base. The degree of compaction of the stack of plates
will depend upon the ratio of the stress to the local effec-
tive modulus of the stack. A sufficiently large column
of plates would encompass the entire range of behav-
ior, with undeformed plates at the upper surface, and a
totally collapsed compact of plates at the base. Simu-
lations of such a tall column would be prohibitively ex-
pensive. Instead, a series of simulations were performed,
using different values of G. The limit G = 0 corresponds
to rigid plates. As G increases, the degree of deformation
increases, until, for G sufficiently large, even the plates
at the top of the stack deform under their own weight.
Eventually, the plates become so weak that the spacing
of the nodes is determined by the potential (4). This
limit was approached, but not quite attained, in the sim-
ulations presented here.

In order to determine local effective properties of the
stack, the SN, nodes were first listed in order of increas-
ing z coordinate, and then divided into N, blocks of B
nodes, where Ny, B = SN,. The mean number particles in
each block is B/S. The dividing surface between blocks
may be defined by the surface midway between the top-
most nodes of one block and the bottommost nodes of
the block immediately above. The top surface of the en-
tire bed is taken to coincide with the upper surface of the
plates.

The mean vertical compressive stress in the bottom-
most block is

7.2 = (Ny — $)Bmg/N .

and that in the top block is
0., = Bmg/2N |
corresponding to nondimensional stresses 7., = (N —
%)BG/N and 6,, = BG/2N.
The mean void ratio e within each block is defined as

(volume of voids in block)

(volume of particles within block)

The nodes repel each other via soft potentials and there-
fore never touch. However, it is convenient to consider
contact to have occurred if the separation between plate
surfaces is less than § = h/100. One can then define the
fraction

(number of nodes in contact with the node below)

c

(total number of nodes)
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The bending energy associated with the nodes within the
block may be computed by (1). We nondimensionalize
energy (per unit length in the y direction) by Eo = oohL,

so that
1 dz¢ ?
F=3s 2 (d@z)

nodes

and the mean bending energy per plate is

F,=FS/B. (9)

IV. RESULTS OF NUMERICAL SIMULATIONS

Figure 1 shows results of a simulation with N, =
180,L = 20a (i.e., S = 20), at a series of increasing
values of G. Rigid plates [Fig. 1(a)] act as cantilevers,
thereby creating large holes. These rapidly disappear as
G increases. The undulating layers of clay are similar to
those seen in some shales (Chap. 7 of [1]). In such shales,
disruptions to the parallel bedding of clay particles are
usually created by the presence of silt particles. In the
simulations presented here, the disruptions are created
by the edges of the finite clay particles.

Figure 2 shows similar results for a simulation with
L = 10a, N, = 500. Note that fluctuations at the top
of the stack are large for nonrigid plates. If G is suffi-
ciently large, the vertical position of nodes at any one
lattice coordinate x will be independent of the positions
of nodes at adjacent lattice coordinates, and we expect

fluctuations at the top of the stack to vary as N,}/ 2 In
a real sediment, plates oriented far from the horizontal
would slide relative to each other once the yield stress
of the compact (or frictional force between plates) was
exceeded. There is therefore a need to introduce friction
into future simulations, and to allow sliding to occur hor-
izontally as well as vertically.

Figure 3 shows results for the void ratio e as a func-
tion of stress o,,, for three simulations with (IV,,S) =
(500,5), (180,10), and (180,20). Each curve consists of
results obtained using many values of G. In order to eval-
uate average void ratios and stresses within the stacks of
plates, the 500 particles of length S = 5 were divided
into 10 blocks of 250 nodes, whereas the 180 particles
of length S = 10 and 20 were divided into 9 blocks, of
200 and 400 nodes, respectively. Results for the topmost
block were in each case anomalous, and have been dis-
carded. For all three simulations there seems to be a
relation of the form
—-0.3

exo,, ,

o 2z < Ot (10)
where the turnover occurs at stresses d,, ~ o, = 3 X
10%, 2x10%, and 107 for the cases S = 5, 10, and 20,
respectively. At higher stresses, the void ratio decreases
more rapidly. For S = 10 there is a power-law relation
of the form

e &z'zl, Gy > 0y . (11)
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FIG. 3. The void ratio in three compacted beds, as a func-
tion of the nondimensional stress 6.,, XL = 5a; +L = 10a;
xL = 20a.

For the other two cases (S = 5 and 20) the precise form
of the rapid decrease is less clear.

The nondimensionalization adopted in Sec. IV is based
on the length of the particles, and one may regard the
three sets of results for S = 5, 10, and 20 as being ob-
tained on identical particles, using an increasingly fine
discretization. One might therefore expect the results
to overlap, which they do not. As the mesh size is re-
fined, so the distribution of holes extends to smaller hole
sizes, which can withstand higher stresses before collapse.
This not only delays the final stages of collapse (i.e., o;
increases as S becomes large), but also increases the void
ratio at any given value of stress 6.

At low stresses, the stack of particles is relatively open,
with few nodes in contact. As compaction proceeds, addi-
tional nodes come into contact, and the packing becomes
progressively stiffer. Figure 4 shows the proportion of
nodes p. in contact with the node below. As explained
above, this is not well defined: we assume that contact
occurs if the node-node separation is less than § = h/100.

The work W performed in uniaxial compaction from
an initial void ratio e; and stress o; to a final void ratio
e, and stress o5 takes the form

€1
w oc/ 0,.de ,
e2

and this work is stored within the plates as bending en-
ergy F. Hence if
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FIG. 4. The fraction p. of nodes in contact with the node
below, as a function of the applied nondimensional stress 4.
180 particles of length L = 10a.
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then the stored energy is

F oc AVl 1712 = Alglme — gl o] .

and we see that we require o > 1 if the energy stored in
the compact is to remain finite as e — 0. If the plates
were described as continuous curves, there would be no
limit to the total curvature, and hence to the amount
of energy stored within the plates. However, in a dis-
crete simulation, the energy will remain finite. Thus the
change behavior from (10) to (11) is again seen to be
related to the discreteness of the simulations. At suffi-
ciently high stresses, the soft force (4) between the par-

ticles will eventually lead to a void ratio e 0:2/% We
see from Fig. 3 that this limit was not reached in the
simulations presented here. .

Figure 5 shows the mean bending energy Fj stored
in the plates, for the case N;=180, §=10. The bending
energy attains a plateau for sufficiently high stresses, and
this plateau is higher in blocks further from the horizontal
base. At these stress levels, the plates have lost most of
their rigidity, and the packing is determined mainly by
a local vertical equilibrium. Fluctuations in the height
of adjacent nodes forming any given plate are caused by
particle edges lower down the stack. A typical fluctuation
at height z therefore scales as (z/S)*/2. To check this
scaling, we computed the sum

. a? S 2
P = WMZ(A@)

over each block of B nodes, where A(, is the finite dif-
ference Laplacian (5). The end nodes of each plate do
not contribute to Fj, because of the boundary condition
(3), and the factor S/(S — 2) makes F;, proportional to
the average energy per interior node. Once the stack has
hocome compressed, the nth block is bounded between
2 =(n—-1)B/N and 2 = nB/N, and the mean energy
per interior node should scale as (n — %)B/NS. Figure 6
plots

FuNS o
Fo= 2 (12)
B(n - 3)
20
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FIG. 5. The nondimensional bending energy per plate F,
as a function of the applied nondimensional stress 6... 180
particles of length L = 10a. Each curve corresponds to results
from one block, with + the block at the base of the stack.
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FIG. 6. The scaled energy F,, defined by (12), plotted
against the block number n. Simulations with (N, S)=(a)
M (180,10); (b) --- A+ (500,10); (c) —-x-- (180,16);
(d) —— O—— (180,20); (&) —-—O—— (500,5).

against the layer number n, for the final compacted
state of several simulations. The energy per node scales
(roughly) as expected, i.e., F,, varies little between dif-
ferent simulations and between different blocks. Some
scatter is to be expected, both because of statistical vari-
ations, and because the stresses were insufficiently high
for the rigidity of the plates to be completely negligible.
We conclude from the results of Fig. 5 that the proper-
ties of the stack of plates vary as a function of position
z, albeit in a predictable fashion.

V. EXPERIMENTS

In order to test the results of the numerical simula-
tions, we performed an experiment on a quasi-2D packing
of flexible platelets. The platelets were pieces of draw-
ing paper of thickness 0.23 mm, with lateral dimensions
25%x10 mm?2. Their rigidity modulus, determined by a
three-point bending test, was £=0.4 GPa. A container
of width 0.3 m and of height 0.5 m was constructed, us-
ing two vertical sheets of glass for the front and back.
These were held apart by separators of thickness 12 mm,
slightly larger than the platelet width in order to avoid
excessive friction between the platelets and the container
walls. The three separators (forming the base and side
walls of the container) were glued onto one of the glass
plates, which was held slightly tilted with respect to the
vertical. The 5000 paper platelets were then positioned
individually, by means of tweezers, with the center of each
plate at an abscissa x chosen at random in the range 0-
300 mm. If x < 15 or = >285, a part of the platelet
had to be cut off, in order to avoid overlap with the
side walls (separators) at ¢ = 0 and 300. When all the
platelets were in place, the glass front was clamped onto
the cell, which was then held vertically. Compaction of
the stack of platelets was performed by dropping a hor-
izontal rod of length 0.26 m into the container, onto the
top surface of the stack: the effect of gravity acting on the
platelets was negligible compared to the applied stress.
The load was the increased by adding further rods, of
plastic or metal, to the top of the stack. In spite of some
small initial roughness of the stack surface. the loading
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FIG. 7. Experimental results for the stack deformation
AH/H as a function of the vertical stress o,.

(a)

rods were all horizontal. The stress o¢ defined by (8) is
00=0.24 Pa, and the maximum stress 35.7 kPa used in
the experiments corresponded to a nondimensional stress
F,, = 1.5 x 105,

The initial height H of the stack was 0.14 m. The
maximum loading that we applied induced a deforma-
tion AH/H=16%. The deformation is shown in Fig. 7
as a function of the applied stress. At each loading a pho-
tograph of the stack was taken, showing the progressive
deformation of the platelets: four stages of compaction
are shown in Fig. 8. Attempts to determine the void ratio
e from digitized images proved difficult, and it was easier
to compute e by subtracting the volume of the platelets
(assumed incompressible) from the total volume of the
stack.

FIG. 8. Bottom part of the stack at four different compactions, AH/H= (a) 0; (b) 0.06; (c) 0.11; (d) 0.16.
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The results of Fig. 7 indicate AH/H o« 02 at the
lowest stresses, with an exponent which decreases to
~0.5 at the highest stresses. Travers et al. [7] per-
formed compaction experiments with short cylinders in
a quasi-2D cell, similar to our own cell. They obtained
a deformation-force relationship of the form AH/H
02,28, and showed that the nonlinearity was due to an
increase in the number of contacts between particles as
the load was increased. Presumably, at low stresses, our
platelets must deform considerably before each additional
contact is formed, and the stress-strain relation is closer
to linear than that found for cylinders.

The void ratio is shown in Fig. 9 as a function of the ap-
plied stress. Two regimes are observed. At low stresses,
the curve does not follow a simple power law: the void
ratio tends to a finite limit as the stress decreases to
zero. At higher stresses (corresponding to compactions
AH/H > %), there is a power law, with exponent —0.2.
This differs slightly from the exponent —0.3 obtained in
the numerical simulations. However, considering the dif-
ferences between the methods by which stress was applied
in the numerical simulation and the experiment, a small
difference between the exponents is not surprising.

No attempt has been made here to obtain a distribu-
tion of pore (hole) sizes as a function of stress and po-
sition in either the numerical simulations or the experi-
ments. This is partly because larger simulations would

03
]
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25 30 35 40 45 50

log,((c,,) (kPa)

FIG. 9. Experimental results for the void ratio e as a func-
tion of the vertical stress o,,. The broken line corresponds to
a power law index —0.216.

be desirable for such studies, but also because it is not
clear what the most useful measure of pore size would
be. A more important goal would be information on the
transport properties of the packing, e.g., the permeabil-
ity to fluid low. The permeability will be nonzero in a
two-dimensional simulation only if the particles are pre-
vented from touching one another, e.g., by electrical re-
pulsions [8]. The extension of the numerical simulations
presented here to a three-dimensional packing of flexible
plates would at present be prohibitively expensive.
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FIG. 1. Simulations of a compacted bed of 180 particles
of length L = 20a. (a) Rigid plates; (b) G = 1.9 x 10%; (c)
G =21x10%(d) G =1.8 x 10°.
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FIG. 8. Bottom part of the stack at four different compactions, AH/H= (a) 0; (b) 0.06; (¢) 0.11; (d) 0.16.



